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ABSTRACT: Past studies have shown a significant observed poleward trend in the latitude at which tropical cyclones reach their lifetime
maximum intensity (LMI), especially in the Northwest Pacific basin. Given the brevity of the historical record, it remains difficult to
separate the forced trend from internal variability of the climate system. A recently developed tropical cyclone downscaling model is
used to downscale the Community Earth System Model 2 (CESM2) pre-industrial control simulation. It is found that the observed trend
in the latitude at which tropical cyclones reach their LMI in the Northwest Pacific is unlikely to be caused by internal variability. The
same downscaling model is then used to downscale CESM2 simulations under historical forcing. The resulting trends distribution shows
significant poleward migration of tropical cyclone LMI, even after regressing out the internal variability, as well as the effects of the forced
signal that projects onto internal variability. The results indicate that the observed poleward migration of the latitude at which tropical
cyclones reach their LMI in the Northwest Pacific basin is likely to be at least in part forced. However, the magnitude of the projected
poleward trend in climate models can be significantly modulated by the simulated spatial pattern of ocean warming. This highlights how
discrepancies between models and observations, with regards to projected changes to the equatorial zonal sea-surface-temperature gradient
under anthropogenic forcing, can also lead to large discrepancies in projected changes to the LMI latitude of tropical cyclones.

SIGNIFICANCE STATEMENT: Observations in the
Northwest Pacific basin show that the latitude at which
tropical cyclones are at their most intense has been trending
northwards in the recent half-century. These changes are
important since tropical cyclones could bring hazardous
weather to coastal areas that are poorly equipped to han-
dle them. Here, we show that natural variations in Earth’s
climate are very unlikely to explain the observed pole-
ward trend in the latitude that tropical cyclone reach their
maximum intensity. We find that it is much more likely
that the observed trend is forced by human-related emis-
sions, though the spatial pattern of warming in response to
greenhouse emissions can have significant impacts on the
magnitude of the trend.

1. Introduction

Tropical cyclones (TCs) are dangerous weather systems
that bring extreme wind, rain, storm surge, and flooding to
coastal areas. In general, TCs form in the tropics, and move
westward and poleward as they evolve over time. A num-
ber of observational and modeling studies argue that, as the
planet warms from anthropogenic greenhouse gas emis-
sions, TC activity has and will migrate poleward (Kossin
et al. 2014, 2016; Sharmila and Walsh 2018; Daloz and
Camargo 2018; Studholme et al. 2022; Lin et al. 2023a).

It is not easy, however, to quantify whether or not TC
activity has expanded poleward over the historical period,
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given its brevity, as well as the lack of high-quality obser-
vational data. One metric that has been used to quantify
TC activity is the latitude at which a TC attains its lifetime
maximum intensity (LMI), deemed the latitude of lifetime
maximum intensity (henceforth, 𝜙LMI). As noted in Kossin
et al. (2014), 𝜙LMI is particularly useful because it (1) ac-
counts for heterogeneity across basins in definitions of TC
intensity, and (2) is less prone to past observational un-
certainties. Research has shown that the global 𝜙LMI is
moving polewards at ≈ 0.1◦ per decade, most of which
is due to TCs that occur in the Northwest Pacific basin
(Kossin et al. 2014).

While there is a pronounced poleward trend in 𝜙LMI,
it has occurred alongside natural interannual and decadal
variability, which has been known to modulate many as-
pects of TC behavior, including 𝜙LMI. In the Northwest Pa-
cific basin, two dominant modes of variability on these time
scales are El Niño-Southern Oscillation (ENSO), and Pa-
cific decadal variability (PDV) [see Capotondi et al. (2020)
for discussion on this nomenclature]. In El Niño events,
the mean genesis location of TCs shifts southeastward,
while in La Niña events, it shifts northwestward (Chan
1985; Chia and Ropelewski 2002; Camargo et al. 2007a).
PDV also exhibits similar controls on TC genesis, though
comparatively smaller in magnitude (Song and Klotzbach
2018; Zhao et al. 2022). Furthermore, during El Niño,
TCs tend to spend more time over warmer waters, leading
to longer lifetimes (Wang and Chan 2002; Camargo and
Sobel 2005) and stronger intensities (Camargo and Sobel
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2005) [and vice-versa during La Niña]. ENSO is also
known to significantly modulate the landfall locations of
TCs (Saunders et al. 2000; Camargo et al. 2007b). Note,
while there are other modes that affect TC behavior in the
Northwest Pacific, such as the Pacific Meridional Mode
(PMM) (Chiang and Vimont 2004; Zhang et al. 2016), in
this work, we focus on ENSO and PDV. Early work on
the PMM suggests that the PMM is a route through which
extratropical variability can influence tropical variability
(Chiang and Vimont 2004). Recent work, however, has
highlighted the bi-directional coupling between ENSO and
PMM (Stuecker 2018). Thus, the degree to which ENSO
and PMM are independent is still an unsettled issue.

In many studies, natural internal variability has been
recognized to contribute to the poleward trend in 𝜙LMI
(Kossin et al. 2014; Moon et al. 2015; Song and Klotzbach
2018; Zhao et al. 2022). However, these same studies have
debated over the relative roles of global warming and in-
ternal variability in the observed poleward trend in 𝜙LMI.
Kossin et al. (2014) found that internal variability does
not significantly contribute to the poleward trend in 𝜙LMI,
and put forth a potential explanation for the observed pole-
ward shift in 𝜙LMI: global warming meridionally expands
regions that are favorable for TC formation and intensifi-
cation. In contrast, Moon et al. (2015) emphasized that
internal variability has a large influence on 𝜙LMI variabil-
ity, contesting the findings of Kossin et al. (2014). Nearly a
decade later, there is still a strong observed poleward trend
in 𝜙LMI in the Northwest Pacific (see Figure 1), suggesting
that global warming leads to a poleward expansion of 𝜙LMI.
Nevertheless, the role of internal variability should not be
downplayed; in this perspective, as suggested by Song and
Klotzbach (2018), historical trends in 𝜙LMI are a function
of both (1) interdecadal fluctuations in the genesis latitude
that are related to internal variability, and (2) global warm-
ing induced trends that lead to a poleward expansion of
𝜙LMI (Kossin et al. 2014).

What are the physical mechanisms behind the poleward
trend in 𝜙LMI? Is TC genesis merely moving poleward,
or are there systematic changes to TC motion that favor
poleward expansion? Wang and Wu (2019) emphasized
the importance of changes to the large-scale steering flow
(i.e. the tracks themselves) when considering the historical
trend in 𝜙LMI. In contrast, Daloz and Camargo (2018) em-
phasized the importance of the genesis latitude to trends in
𝜙LMI, and found a significant poleward trend in the genesis
latitude of Northwest Pacific TCs associated with the trend
in 𝜙LMI. More recently, Zhao et al. (2022) argued that on
interannual time scales, ENSO and PDV have significant
controls on the genesis latitude of Northwest Pacific TCs,
and track shifts are much less important when considering
trends in 𝜙LMI. However, unlike 𝜙LMI, genesis latitude
is sensitive to the definition of the point of genesis, which
makes genesis latitude trends subject to large observational
uncertainties.

While there have been a number of studies focused
on understanding trends of 𝜙LMI in the Northwest Pacific
basin, it remains difficult to separate the confounding in-
fluence of internal variability of the climate system with
the anthropogenically forced signal. Observational studies
typically regress out the linear influence of internal vari-
ability to unmask the forced signal (Kossin et al. 2014;
Moon et al. 2015; Song and Klotzbach 2018; Zhao et al.
2022). This method, however, ignores the “pattern ef-
fect” (Stevens et al. 2016) – namely that global warming
need not be uniform in space, and can have large spatial
variations, some of which could project onto the dominant
patterns of interannual and interdecadal variability. For in-
stance, observed trends show an enhanced tropical Pacific
sea-surface temperature (SST) zonal gradient (i.e. a more
“La-Niña like” SST pattern), and it is unlikely that this is
a mere byproduct of internal variability (Coats and Kar-
nauskas 2017; Seager et al. 2019). These issues, coupled
with a dearth of high-quality observations of TCs, make it
difficult to deduce how much anthropogenic warming has
contributed to historical trends in 𝜙LMI.

In this study, we attempt to disentangle the contributions
of anthropogenic forcing and internal variability to trends
in 𝜙LMI of TCs in the Northwest Pacific basin. We use
a recently developed TC downscaling model (Lin et al.
2023b) to understand the behavior of TCs in long-running
simulations of Earth’s pre-industrial climate, as well as in
simulations under historical forcing. Section 2 describes
the methods and data used in this study. Section 3 follows
with analysis of TC behavior in a pre-industrial control
climate. Section 4 then shows the results and interpretation
from downscaling historical simulations. Finally, section
5 concludes this study with a summary and discussion.

2. Methods and Data

In this study, we use Community Earth System Model 2
(CESM2), NCAR’s latest suite of climate and earth system
models (Danabasoglu et al. 2020). We have chosen to
use CESM2 since it has been shown to simulate ENSO
and PDV relatively well in the 1000-year pre-industrial
control simulation – the model is run from model years
0 to 1200, but the first 200 years are thrown away the
atmosphere to reach a stationary climate (Capotondi et al.
2020). There are notable biases, however, related to the
amplitude and diversity of El Niño. The amplitude of El
Niño is about 30% larger than that in the observations,
and is more focused in the central Pacific than the eastern
Pacific (Capotondi et al. 2020). Since the pre-industrial
and historical CESM2 simulations are run at a nominal
horizontal resolution of 100-km, it is likely that TC are
poorly represented owing to coarse grid spacing (Davis
2018).

We choose to downscale both the pre-industrial and his-
torical CESM2 simulations, using the publicly available,
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TC downscaling model developed in Lin et al. (2023b),
which is a derivative of the MIT TC downscaling model
(Emanuel 2006). On a high level, the model works by ran-
domly seeding and evolving weak protovortices in space
and time, following the method of Emanuel et al. (2008).
The seeds are advected by the background environmental
winds, and strengthen/weaken according to a pair of dy-
namical equations that describe the intensification rate of
a TC in the presence of vertical wind shear, ocean mixing,
among other processes (Emanuel 2017). A vast majority
of the seeds dissipate, and only seeds that reach an intensity
of at least 15 m s−1 are kept. The model has been shown to
broadly reproduce the climatology and variability of TCs
over the historical period (Lin et al. 2023b). The reader is
referred to Lin et al. (2023b) for more details.

The downscaling model uses monthly averages of the
250- and 850-hPa horizontal winds, 600-hPa temperature
and specific humidity, potential intensity, SST, and sur-
face pressure. These are used to drive the model over the
CESM2 pre-industrial control run during model years 200-
1200. We downscale 900 tracks globally for every year,
for a total of 900,000 tracks over the entire pre-industrial
period. Around 30% of the global tracks occur in the
Northwest Pacific. The ensuing results do not change if
the sample set is reduced in size by half, suggesting that
the sample size is sufficient.

The ENSO phase and magnitude is determined using the
Niño-3.4 index, which is the average of the SST anomaly
over the eastern and central Pacific regions, from 5◦S-5◦N,
and from 170◦W-120◦W (Barnston et al. 1997). Hence-
forth, ENSO index refers to the Niño-3.4 index. We use the
Hadley Centre Sea Ice and Sea Surface Temperature data
set (HadISST), from 1870-2022, to compute the ENSO
index (Rayner et al. 2003). SST anomalies are computed
with respect to the 1981-2010 mean. To coincide with the
peak of the TC season in the Northwest Pacific, the ENSO
index is averaged from July to October (JASO). Following
Mantua et al. (1997), PDV is defined as the leading empiri-
cal orthogonal function of North Pacific (20◦N-60◦N) SST
anomalies which have the seasonal cycle removed. In the
pre-industrial control simulations, PDV is computed over
the entire simulation, while in the historical simulations,
PDV is computed over a period where the anthropogenic
forcing is relatively small (1850-1950). Since there is no
seasonal cycle in the PDV index, we use an annual-averaged
PDV to describe the PDV phase during each year. The re-
sults are insensitive to whether PDV is annually-averaged
or averaged only over JASO.

In order to benchmark the model to historical obser-
vations, we also downscale the ECMWF Reanalysis v5
(ERA5) reanalysis, from 1979-2022 (Hersbach 2016). The
reanalysis data is downscaled in the same manner as
CESM2. Historical TCs in the Northwest Pacific basin
are identified using the International Best Track Archive

for Climate Stewardship (IBTrACS) dataset from 1979-
2022 (Knapp et al. 2018). In both the observations and the
downscaling model, we only consider storms whose life-
time maximum intensity exceeds 30 knots, for consistency
between the two datasets. TC intensity is determined us-
ing the USA best-track estimates of intensity via the Joint
Typhoon Warning Center.

3. Unforced Trends

Before downscaling the pre-industrial control simula-
tion, we first show that the downscaling model adequately
represents the climatology of 𝜙LMI in the Northwest Pa-
cific basin. To do this, we downscale ERA5 reanalysis
data, from 1979-2022, as in Lin et al. (2023b). Figure
1a shows the probability distribution of individual storm’s
𝜙LMI in the Northwest Pacific basin. In general, the ob-
served distribution of 𝜙LMI is within the sampling error
of the historical observations, except for a peak in 𝜙LMI
frequency around 18 degrees latitude.

Figure 1b shows interannual variability of the annually-
averaged 𝜙LMI in observations and as modeled by the down-
scaled tracks. The correlation between the two is modest
(𝑟 = 0.36), though the signal may be reduced because of
sampling error, as will be elaborated on in the ensuing
paragraph. The magnitude of the 𝜙LMI trend in the down-
scaling tracks (0.34◦ per decade) is slightly smaller than
that of the observations (0.38◦ per decade). The observa-
tional trend, however, is slightly sensitive on the minimum
LMI required for each storm; for instance, if we increase
the minimum storm LMI from 30 knots to 35 knots, the
𝜙LMI latitude trend rises to 0.51◦ per decade. In contrast,
the ERA5 𝜙LMI trend is not sensitive to this minimum
LMI threshold. Finally, the average annual 𝜙LMI in the
downscaling model is biased slightly equatorwards (0.5◦
in latitude).

In the historical observations, there are around 28 TCs
per year in the Northwest Pacific basin that achieve a
LMI of at least 30 knots. In contrast, the downscaling
model can produce a substantially larger number of syn-
thetic storms given statistically similar large-scale condi-
tions, but randomizes the initial genesis points in space
and time. Because of the small sample size in the observa-
tions, some fraction of interannual variability in annually-
averaged 𝜙LMI could be merely a function of stochasticity
in the genesis timing and location of the TCs. The sampling
error of the observational dataset should thus be taken into
account.

To account for this sampling error, we randomly sub-
sample (bootstrap) the downscaled TCs to the same size as
the historical observations from 1979-2022. Around 30%
of the 900,000 total tracks occur in the Northwest Pacific,
such that there are a total of around 275 TCs to sample
from every year of the pre-industrial control simulation.
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Fig. 1. (a) Distribution of individual storm 𝜙LMI in the Northwest Pacific basin, where error bars indicate the 95% confidence interval obtained
by sub-sampling the ERA5 reanalysis downscaling events to the same size as the observational events. The observed distribution is shown in red
stars. (b) Annually-averaged 𝜙LMI in the Northwest Pacific basin, as calculated from (red) observations, and (blue) the downscaled ERA5 tracks.
(c) Distribution of annually-averaged 𝜙LMI in the (red) observations, and (blue) downscaling model with (black) 95% confidence intervals, after
repeatedly sub-sampling the downscaling events to the observational count from 1979-2022. The bias of the downscaled annual 𝜙LMI (0.4◦) is
removed from the distribution. (d) Same as (c) but for CESM2. (e) The annually-averaged 𝜙LMI of downscaled TCs in the Northwest Pacific basin,
over years 350-450 in CESM2. (f) Same as (c) but for Reduced-ENSO and Reduced-LMI.

We repeat this bootstrapping process 1000 times, and av-
erage the storm LMI for every year, creating 1000 samples
of annual 𝜙LMI, for each year from 1979-2022. Figure 1c
shows the distribution of annual 𝜙LMI in the downscaling
model, along with 95% confidence intervals that represent
the range of the annual 𝜙LMI distribution over a 44-year pe-
riod (i.e. same size as the observational record). The small
bias in 𝜙LMI is removed in Figure 1c in order to directly
compare the variability about the mean. In general, we
observe that the distribution of annual 𝜙LMI in the obser-
vations is within that of the downscaling model, especially
when accounting for sampling errors. This gives confi-
dence that the downscaling model can be used to estimate
𝜙LMI, given the large-scale environmental conditions.

We now proceed with analysis of the downscaled TCs
from CESM2. Figure 1d shows the 𝜙LMI distribution for
individual storms, throughout the 1000-year CESM2 pe-
riod that was downscaled. The observed distribution, as
well as the 95% confidence intervals of the downscaled dis-
tribution, are shown for comparison purposes. The down-
scaled distribution of 𝜙LMI qualitatively matches that of the
observed distribution, though the frequency of 𝜙LMI from
15◦N-25◦N is less than that in the observations. This could
potentially be caused by biases in the climate model mean-

state, though that was not thoroughly investigated here. We
do not expect the two to match exactly, however, since the
large-scale environmental conditions are not exactly the
same.

As an example, Figure 1e shows the annually-averaged
𝜙LMI of downscaled TCs in the Northwest Pacific basin,
from years 350-450. The annual 𝜙LMI is obtained by av-
eraging over all downscaled TCs, every year. Immediately
obvious is that there is considerable interannual variability
in the downscaled 𝜙LMI, which is exclusively a function
of the interannual variability in the large-scale conditions.
In fact, we qualitatively observe that there is an unforced
poleward trend in 𝜙LMI in the 40-year time period from
≈390 to ≈430. The PDV phase is strongly positive from
years 380-400, and almost exclusively negative from years
400-440 (see Fig. 17 of Capotondi et al. (2020)).

What is the sensitivity of 𝜙LMI to the modeled inter-
nal variability (ENSO and PDV)? Figures 2a,c show the
distributions of the JASO-averaged ENSO and PDV in-
dices. The interannual variability of the annual 𝜙LMI is
much larger in the raw downscaling tracks as compared to
observations, even when accounting for sampling variabil-
ity (see Supplementary Figure S1). A large part of this
is because the monthly amplitude of ENSO is about 30%
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Fig. 2. (a) Probability distribution of the JASO ENSO index, in (red) observations, (orange) raw CESM2 fields, and (blue) the Reduced-ENSO
case. 95% confidence intervals, obtained by sub-sampling the Reduced-ENSO case to the observational sample size, are shown. (b) Contour plots
of the joint probability density distribution for JASO ENSO index, and the downscaled annual 𝜙LMI in the Northwest Pacific. Blue and red lines
represent linear fits in the downscaling and observational data, respectively. (c) Same as (a), but for PDV of the uncorrected CESM2 fields. (d)
Same as (b) but for the PDV.

stronger in CESM2 than in observations, as noted in Capo-
tondi et al. (2020). Likewise, the amplitude of the JASO
ENSO index in CESM2 is larger (≈ 40%) than the ob-
served JASO ENSO index, as seen in Figure 2a. Since this
can significantly affect the magnitude of trends associated
with internal variability, we reduce the magnitude of the
JASO ENSO index in CESM2 by reducing its sample stan-
dard deviation (using 1 degree of freedom) to that of the
observations. This amounts to dividing the JASO ENSO
index of the CESM2 simulation by 1.41. These samples
are denoted as “Reduced-ENSO”, and are shown in Fig-
ure 2, along with the 95% confidence intervals that are
obtained by sub-sampling the CESM2 ENSO index to the
same sample size as observations. Note, the distribution
of ENSO in the model is not expected to exactly match the
observational distribution, since transient “La Niña”-like
warming patterns may be associated with global warming
(Coats and Karnauskas 2017; Seager et al. 2019).

Since there is a strong relationship between the JASO
ENSO index and the downscaled annual 𝜙LMI (𝑟 = −0.67,
shown by the dashed blue line in Figure 2b), a reduction in
the magnitude of the ENSO events must also be accompa-
nied by a reduction in the variability of annually-averaged
𝜙LMI. This is done by subtracting the product of (1) the
sensitivity of 𝜙LMI to ENSO, and (2) the reduction in the
magnitude of the CESM2 ENSO events (the bias correc-
tion), from the 𝜙LMI predicted by the downscaling model.
This leads to interannual variations of 𝜙LMI in which the
ENSO distribution is normalized to be similar to that in
the observations. Note, the sensitivity of annual 𝜙LMI to
ENSO is unchanged in the resulting 𝜙LMI distribution.

Figure 2b shows the joint probability density distribu-
tions between the bias-corrected Reduced-ENSO index and
𝜙LMI. While all of the observed pairs of JASO ENSO
index and 𝜙LMI fall within the modeled distribution, the
sensitivity (linear slopes) of 𝜙LMI to ENSO is larger in the
downscaled tracks than in the observations, though within
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2 standard errors of that of the observations. The stronger
sensitivity in the downscaled CESM2 tracks could be be-
cause the CESM2 ENSO events have stronger amplitudes
in the central Pacific, rather than in the eastern Pacific
(Capotondi et al. 2020). The westward shift of SST vari-
ance could lead to overly strong controls of ENSO on 𝜙LMI
in the Northwest Pacific basin.

Figure 1f shows the distribution of annual 𝜙LMI, for the
Reduced-ENSO case. Even after correcting for the ENSO
amplitude bias, we observe that the variability in annual
𝜙LMI is larger than in observations (owing to the larger
sensitivity of 𝜙LMI to ENSO). While the two distributions
do not necessarily have to be equal, we create a second
set of bias-corrected samples, denoted “Reduced-LMI”,
as shown in Figure 1f. The Reduced-LMI samples are
created by reducing the standard deviation of the annual
𝜙LMI distribution to be equal to that over the ERA5 down-
scaled historical period (1979-2022). Thus, the sensitivity
of 𝜙LMI to ENSO is reduced (in this case, by ≈ 40%), and
the variance of annual 𝜙LMI is roughly equal with that of
the observations. The Reduced-ENSO and Reduced-LMI
cases are two, more-or-less realistic estimates of 𝜙LMI vari-
ations that are only caused by internal variability.

The probability distribution of the annual PDV index
is well-matched between CESM2 and the observations, as
shown in Figure 2c, such that we do not modify the PDV
index. This choice, however, is made despite the fact that
PDV and ENSO are not independent modes of variability.
In fact, their respective monthly indices are decently cor-
related (𝑟 = 0.32). Thus, in theory, reductions in ENSO
amplitude must also be associated with reductions in PDV
amplitude. In practice, this makes a little difference, since
corresponding reductions in PDV amplitude reduce the
standard deviation of the PDV index by only 5%. Note the
sensitivity of 𝜙LMI to PDV is nearly the same in the CESM2
downscaled TCs as compared to that in the observations,
as shown in Figure 2d.

We now evaluate the likelihood of the observed 𝜙LMI
trend in a climate that has no anthropogenic forcing. Fig-
ure 3 shows the probability distribution and exceedance
probability distribution of 44-year trends in the Northwest
Pacific 𝜙LMI, calculated from the downscaled 1000-year
CESM2 pre-industrial control simulation. For compari-
son purposes, we also show the 44-year trends distribution
obtained by downscaling ERA5, from 1979-2022. The
spread in this distribution is obtained by sub-sampling the
ERA5 downscaling event set to an annual-average of 28
storms per year, as is similarly done in the pre-industrial
control case. For the Reduced-ENSO case, there is only a
10% chance of seeing a trend exceeding that in observa-
tions, while for the Reduced-LMI case, there is only a 1%
chance. In both cases, it is unlikely that the present pole-
ward trend in 𝜙LMI can be explained purely through natural
variability of the climate system. In contrast, the observed

𝜙LMI trend sits nearly at the median of the 𝜙LMI trends dis-
tribution obtained through downscaling the ERA5 dataset.
These results are consistent with other work that shows a
poleward expansion of 𝜙LMI in past warm climates, such
as the Eocene and Pliocene, and future warmer climates,
in response to anthropogenic greenhouse gas emissions
(Kossin et al. 2016; Studholme et al. 2022).

However, the spread in the ERA5 trends distribution,
which is only a function of the sampling error, is much
smaller than that of the Reduced-ENSO case, which addi-
tionally depends on the sampling of many states of the cli-
mate system. This implies that internal variability can still
significantly modify trends in 𝜙LMI and mask the global
warming signal, as suggested by Song and Klotzbach
(2018). This issue will be further explored in the next
section.

In general, what are the processes that control the LMI
trend in the downscaling model? Indeed, composites anal-
yses show that both ENSO and PDV significantly modulate
track density [Supplementary Figures S2-S3]. The LMI
trend can be linearly decomposed into trends in the genesis
latitude and trends in the TC tracks (Song and Klotzbach
2018; Zhao et al. 2022):

Δ𝜙 = 𝜙LMI −𝜙g (1)

where 𝜙g is the genesis latitude, and Δ𝜙 roughly repre-
sents changes in TC tracks. The decomposition of each
of these quantities to ENSO and PDV are detailed in Ta-
ble 1. Here, we observe that ENSO is a large modulator
of 𝜙g (𝑟 = −0.75) and 𝜙LMI (𝑟 = −0.75) , and less so, but
still significantly for Δ𝜙 (𝑟 = −0.5). 𝜙g and 𝜙LMI are less
sensitive to the PDV phase, with weaker but still signifi-
cant correlations. This means that most of the interannual
variability in 𝜙LMI is caused by interannual variability in
the genesis latitude, as found in a number of other stud-
ies (Kossin et al. 2016; Song and Klotzbach 2018; Daloz
and Camargo 2018; Zhao et al. 2022). In the downscaled
tracks, only around 20% of the interannual variability in
𝜙LMI is a result of changes to Δ𝜙, or the TC tracks (Table
1). Of course, these relationships are dependent on cou-
pled atmosphere-ocean interactions in the CESM2 model
itself, since the low-level steering flow is responsible for
changes in TC track (Wang and Wu 2019).

Table 1. Linear Regression between Internal Variability Modes and
Variables

Mode Variable Slope (◦) r
ENSO 𝜙g -1.42 0.75
ENSO 𝜙LMI -1.78 0.75
ENSO Δ𝜙 -0.36 0.50
PDV 𝜙g -0.66 0.33
PDV 𝜙LMI -0.86 0.34
PDV Δ𝜙 -0.20 0.27
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Fig. 3. (a) Probability distribution of 44-year trends in the (blue) Reduced-ENSO case, (black) the Reduced-LMI case, (green) the downscaled
ERA5 tracks from 1979-2022, and (red) the IBTrACS dataset from 1979-2022. (b) Exceedance probability of observing 44-year trends in 𝜙LMI.
The exceedance probability in the Reduced-ENSO case is 10%, 1% in the Reduced-LMI case, and 39% in the ERA5 downscaled dataset.

4. Forced Trends

A natural next question to ask is what the forced signal in
𝜙LMI looks like. This question can be answered by down-
scaling simulations under historical forcing. However, as
recent studies show, coupled models may have biases in
the tropical Pacific SST response to increased greenhouse
emissions (Coats and Karnauskas 2017; Seager et al. 2019).
This has significant ramifications for associated TC risk
(Sobel et al. 2023), especially in basins that exhibit strong
modulation of TCs by ENSO (as does the Northwest Pa-
cific) (Camargo and Sobel 2005; Camargo et al. 2007a).
As we shall show in this section, the biases in the equato-
rial zonal gradient of tropical Pacific SST have significant
implications for modeled/inferred trends in 𝜙LMI.

We downscale 6 ensemble members of the CESM2 his-
torical forcing simulations (ensemble members 1 to 6),
from 1850-2014, and perform the same ENSO-bias cor-
rection as we do for the pre-industrial control runs. This
results in a Reduced-ENSO case for each historical simula-
tion ensemble member. We did not create a Reduced-LMI
case, in order to directly compare these results with the
trends distribution from downscaling ERA5 (which does
not employ any bias correction). Using the last 50 years of
each simulation (1964-2014), we calculate a distribution of
44-year trends in the annual-average 𝜙LMI in the Northwest
Pacific. The resulting 44-year trends distribution is thus a
function of the historical forcing, the sampling of internal
variability by the ensemble members, and the sampling
error from the limited number of TCs per year.

Figure 4, in blue, shows the 44-year trends distribution
in the Reduced-ENSO case, which exhibits a clear pole-
ward shift in the 𝜙LMI distribution, as compared to the

trends distribution of the pre-industrial control runs (Fig-
ure 3). The mean of the 𝜙LMI trends distribution is 0.23◦
per decade. Note, this is smaller by about 33% than the
𝜙LMI trend simulated by the downscaled ERA5 tracks.

What contributes to the poleward trend in 𝜙LMI? As
shown by Kossin et al. (2014), one potential explanation
for the poleward shift of 𝜙LMI is an increase in the potential
intensity at higher latitudes, and a decrease in potential in-
tensity at lower latitudes (though different reanalyses prod-
ucts disagree about the magnitude of the changes, likely
because of spurious changes in upper tropospheric temper-
ature (Vecchi et al. 2013)). They also found a decrease in
vertical wind shear at higher latitudes, and an increase in
vertical wind shear in the deep tropics.

However, it is not obvious what the relative contributions
between internal variability and anthropogenic forcing are
to the 𝜙LMI trend, especially in light of spatially inhomoge-
neous warming that may project onto the modes of internal
variability. In order to answer this question, we compute
another 44-year trends distribution, but in this case, regress
out any variability in 𝜙LMI that is associated with ENSO,
as shown by the black line in Figure 4 and denoted as
“No-ENSO”. The mean of this distribution represents the
𝜙LMI trend due to the component of the forced signal that
does not project onto the ENSO index. We also create an
analogous distribution but instead regress out the effects of
PDV on 𝜙LMI.

Immediately obvious is that when regressing out the ef-
fect of ENSO, the entire distribution of 44-year trends in
𝜙LMI shifts right (stronger poleward trends in 𝜙LMI). This
is consistent with the facts that 1) the simulated trend in
the ENSO index is towards a more loosely “El Niño-like”
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Fig. 4. (a) Probability distribution of 44-year trends (using the 1964-2014 window) in the historical CESM2 runs, under the (blue) Reduced-
ENSO case. The probability distribution with (black) ENSO and (orange) PDV regressed out of the annual 𝜙LMI variations. The trend from the
(red) IBTrACS dataset [1979-2022], and trends distribution from downscaling ERA5 over 1979-2022 are shown in red and green, respectively. (b)
Exceedance probability of observing 44-year trends in 𝜙LMI, for all aforementioned cases.

state with enhanced warming in the eastern Pacific, and
2) El Niño events are historically associated with an equa-
torward shift in TC activity, the opposite of the observed
trend. The mean of the 𝜙LMI trends distribution increases
by around 33% - from 0.23◦ per decade in the Reduced-
ENSO case to 0.32◦ per decade in the No-ENSO case.
Note, this is nearly equal to the mean of the trends distri-
bution obtained by downscaling ERA5, and much closer
to the observed trend of 0.38◦ per decade. This means
that the reduced 𝜙LMI trend in the historical simulations
is likely because CESM2 projects a reduced Pacific SST
gradient with warming (more El-Niño-like), in contrast to
a strengthening Pacific SST gradient in the observations
(more La-Niña-like). Meanwhile, regressing out 𝜙LMI
variability that is associated with PDV does not have an
appreciable effect on the distribution of 44-year trends.
This follows from the fact that in the historical forcing
simulations, there is an absence of significant trends in the
PDV index (not shown).

These results seem to favor anthropogenic forcing, not
internal variability, as the root cause of the poleward migra-
tion of 𝜙LMI. This is because a strongly positive poleward
trend in 𝜙LMI still exists even when regressing out the ef-
fects of (1) ENSO and (2) the component of the forced
signal that projects onto ENSO. However, as alluded to
earlier, the results also suggest that the spatial pattern of
warming (the pattern effect) can have significant secondary
effects on the poleward migration of 𝜙LMI. This follows
from the fact that, in a climate model where the equatorial
zonal SST gradient weakens with increased greenhouse
gas concentrations, regressing out the SST warming that

projects onto El Niño patterns significantly shifts the 𝜙LMI
trends distribution poleward. Now, suppose CESM2 could
simulate the observed strengthening of the equatorial zonal
gradient. Then we might expect the modeled distribution
of 𝜙LMI trends to be further to the right than the No-ENSO
case. This distribution would then represent a strong pole-
ward trend in TC activity.

5. Conclusions

In this study, we use a recently developed TC down-
scaling model to understand interannual variability and its
control on 𝜙LMI in the Northwest Pacific basin. We use
the TC model to first downscale ERA5 reanalysis over
the historical period (1979-2022), and show that it is able
to adequately reproduce the climatology of 𝜙LMI in the
Northwest Pacific. We then downscale the 1000-year pre-
industrial control simulation of the CESM2 model, and
show that even in a steady climate, trends in 𝜙LMI can oc-
cur over short time periods. We create two bias-corrected
cases, one which normalizes ENSO variations to be equiv-
alent to that over the historical period, and another which
normalizes 𝜙LMI variations to the be equivalent over the
same period. In these separate cases, there is a 10% and
1% chance, respectively, of observing a 𝜙LMI trend larger
than that observed. Thus, the results suggest that it is un-
likely that natural internal variability is the cause of the
observed 𝜙LMI trend.

We also downscale 6 ensemble members of the CESM2
historical forcing simulations, to understand how anthro-
pogenic forcing can influence trends in 𝜙LMI, and show
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that the 𝜙LMI trends distribution shifts significantly pole-
ward at least in part as a consequence of anthropogenic
forcing. We then regress out any variability that projects
onto the ENSO index, and find that the 𝜙LMI trends dis-
tribution shifts further poleward. These results indicate
that there is a rather robust poleward trend in 𝜙LMI owing
to anthropogenic forcing. They also imply that the spatial
pattern of warming has a significant (though secondary)
impact on 𝜙LMI trends. Given that coupled climate models
project a weakening of the equatorial zonal SST gradient
(as opposed to the observed strengthening of the gradient),
our results suggest that if these same models could properly
model TCs, they would also exhibit weaker-than-observed
trends in 𝜙LMI. This only serves to highlight the critical-
ity of understanding the pattern effect, as there are large
implications for TC risk (Sobel et al. 2023).

TC downscaling methods are powerful tools to under-
stand TC behavior in other climates, since TC-resolving
grid resolutions are computationally costly for climate time
scale simulations (Davis 2018), though recent community
efforts such as HighResMIP show promise (Roberts et al.
2020). There are, of course, caveats associated with down-
scaling methods. Naturally, the climate model simulation
has no knowledge of the downscaled TCs, and thus there is
no feedback of the TCs onto the climate system. Whether
or not this is important is still under debate, but some au-
thors have argued for the role of TCs in modulating the
amplitude of ENSO (Li et al. 2023) and the global merid-
ional heat transport (Emanuel 2001; Gutiérrez Brizuela
et al. 2023). Furthermore, there are nearly unavoidable
model biases when working with climate models, and this
is no different with CESM2. For instance, the 𝜙LMI dis-
tribution for individual storms in the CESM2 simulations
(Figure 1d) has a wider distribution than the observations
(more storms at low and high latitudes). This is likely a
result of biases in the CESM2 mean-state climate, since
the 𝜙LMI distribution obtained by downscaling ERA5 has
little bias compared to the observations when accounting
for sampling variability (Figure 1a). While we did our best
to mitigate the effects of these biases, at least with regards
to the overly-strong amplitude of ENSO, it is difficult to
correct the spatial signature of ENSO, among other issues
(such as frequency, seasonal climatology, teleconnections,
etc.). As a result, the mean and standard deviation of the
44-year trends distributions shown in Figure 3 and 4 are
influenced by these biases.

Regardless, compared to existing work, our study offers
an alternative approach to disentangling the effect of in-
ternal variability and anthropogenic emissions on trends
in 𝜙LMI. While observational studies looking for global
warming signals in TC activity need to remove or smooth
out unforced variability, such as ENSO and PDV [see
Kossin et al. (2014, 2016); Song and Klotzbach (2018);
Zhao et al. (2022)], they implicitly assume that warming
does not project onto any modes of interannual variability.

The recent observed strengthening of the tropical Pacific
SST gradient, which has been interpreted by some au-
thors as a forced signal, muddies interpretation of the short
observational TC record. Our work indicates that the in-
terpretation of the poleward trend in TC activity as having
a forced component is robust to the uncertainty in the SST
pattern effect. At the same time, the pattern effect does sig-
nificantly affect the magnitude of the trend, and provides
another among many motivations to resolve the uncertainty
in the structure of forced tropical Pacific warming.
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